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Birational Geometry from
Zariski’s viewpoint

e §: coherent (= quasi-compact
g and quasi-separated)
(analog. compact Hausdorfl)

o/ =S5\D — § quasi-
compact open immersion
(U: dense 1n §).

J p = defining ideal of D



Basic QQuestion:
Extension problem

e P: a property of morphisms (e.g. P ="flat”)

e fiy: Xy — U: finitely presented /U
with property P.

e Assume 1 f: X — §: an extension of fi.

~> Can one find such an f with P ?

NO in general.

Need to allow birational changes of S preserving U.




Modifications

MDs ). Category of “U-admissible” modifica-
tions:

dense
e Objects: U——-S’
\ tproper
S
e Morphisms: S’
N
S / S 44

The category MD(x ) 1s cofiltered.



BL g5 ) Full subcategory of “U-admissible’ blow-
ups:
e Objects: §” — §: a blow-up with the center
C § \ U (set-theoretically).

Example: § = Spec A, D = V()
~ 8" =Proj D, . J" I c Jfor A k.



Strict Transform

*’

S’ — §: U-admissible modification.
f: X — §: amorphism.

X— Xq =X x5 8" — X
l [fS'
S S’

f/

X¢» «— X’: dividing out 1 p-torsions.



Modified Extension Problem

=-=

fu: Xy — U: finitely presented /U with the
property P.

Assume 4 f: X — §: an extension of fi;.

~> Can one find a U-admissible modification (resp.

blow-up) §” — S such that the strict transform
f': X" —> S has P?



Flattening Theorem

—_— ——

Case: P=flat

Theorem (Gruson-Raynaud, 1970).
fu: Xy — U: flat, finitely presented
— 1S5’ — §: U-admissible blow-up such that
f’: X’ — §’: flat, finitely presented.



Corollary.
BL 5 ) 1s cofinal in MDg 7).

Comments on Flattening Theorem

e Clearif § = SpecV, V: DVR.
e If V: valuation ring, flatness 1s clear, while fi-
nite presentation is rather diflicult.



Proof - Revival of
Zariski’s idea

Zariski-Riemann space (Zariski, 1939)
<U >Cpt — llm S '

H
S’EBL(S,U)

Projective limit taken in the category of
local ringed spaces

(1) Generalization of abstract Riemann surface:
S : regular curve = (U)cpt = § (Dedekind-Weber)
(2) Zariski’s motivation: resolution of singularities




Points and local rings

= Sl

i e O<U>cpt,x = Oy x-
e x ¢ U = 1 V,: valuation ring (of height > 1)
with
31/75,

a: Spec/Vx —S
~ X = {ps’} S’eBL5 1))’ compatible system of
points.
(ps: the 1image of the closed points of Spec Vy.)



O U)ept: 4 D-Valuative ring
— A “composite” of local rings of U
and valuation rings.

i
-

Notice: The valuation rings are not necessarily of
height 1 (even when S : algebraic variety /k).

~> One has to consider valuation rings of higher
height.



Example of valuation rings

_'_'_

S :algebraic surface

ht. | rat. rk.
0 0 trivial valuation
1 divisorial
1 non-divisorial
2 non-divisorial
) ) composite of two divisorial

valuations




Intuitive Description

V: Valuation ring

SpeC Vie=ltgtiitihle >e PO LRI (LIS
“Long Curve”

5 (Udept = U LI T}

T7, «: The set of “long curves”

D/S°
passing through D:
“Tubular neighborhood”



Fundamental Property

=-=

Theorem (Zariski, 1944).
(U)cpt 18 quasi-compact.

e Flattening theorem: consequence of the quasi-
compactness.

Proofs:

(1) @ coherent topoi = coherent topos
(ct. @ cpt Hausdorfl spaces = cpt Hausdorft
space) + Deligne’s theorem (existence of points)
(2) Stone’s representation theorem for distributive
lattices.



Proof of flattening theorem

=—=

Idea: Reduction to “long curves” using the quasi-compactness

(1) True for long curves, i.e. S=Spec V.

(2) True for S=Spec “local ring of a point of (U)cpt.

(Follows from (1) and “true on U” by “patching”.)

(1), (2), and P:
locally finitely

presented le.,VYxe <U>cpt>

Us—S’
& Sl U-Admissible
< blow-up

= Claim is true “locally on (U )cpt”,

Claim 1s true on U,.
(3) Quasi-compactness = Done by birational patching



Other applications

* Embedding theorem for algebraic spaces
(Nagata (1963): for Noetherian schemes).

* Resolution of singularities of quasi-excellent
surfaces (Zariski).



Contents of the Book
(Vol. T)

. Preliminaries

. Formal geometry
. Basics on rigid geometry
. Formal flattening theorem

. Enlargement theorem



To be discussed (Vol. 1) ?

= Sl

. Etale topology
. Lefschetz trace formula

. Relationship with logarithmic geometry &
ramification theory



Why de we do this ?

1. Arithmetic geometry of Shimura varieties (local
models, p-adic modular forms).

2. Cohomology theory of schemes (/-adic Lefschetz
trace formula, rigid cohomology of Berthelot).

3. Mirror symmetry (expected construction of Mirror
partner (Kontsevich, Fukaya,...)).



Recall: Our approach

*’

Birational geometry of formal spaces = Rigid geometry

Raynaud’s viewpoint ‘ Zariski’s viewpoint of

of rigid geometry birational geometry
Geometry of Rigid analytic Zariski-Riemann
models ~ geometry space

Geometry of Formal Schemes




Birational approach to Rigid
Geometry

Birational Geometry | p-adic Rigid Geometry

D: Cép — 099

S //S

Spt Z,,




Adequate Formal schemes

=-=

* Defined ring theoretically.
e Noetherian outside the ideal of definition.

Objects contain:

e Spt V, V: a-adically complete valuation ring.
e Noetherian formal schemes.

Functoriality:

e Closed under finite type extensions.
e Base change by finite type morphisms.



Fsadq

Notice:
e The height of V can be arbitrary.

e Includes formal models of Tate’s affinoid alge-
bras.

Nice Point: Can generalize Theorems in EGA III (Finitudes, GFGA
Comparison, GFGA Existence) in derived categorical language.




Coherent Rigid Spaces

CFs244 = the category of coherent (= quasi-compact
and quasi-separated) adequate formal schemes.

1 Notion of “admissible blow-ups”.

Definition. The category of coherent rigid spaces:

CRf = CFs249/{admissible blow-ups}.

Quotient functor

CFs®d — CRf X — X"&,



Admissible Topology

=-=

e U/ — X: (coherent) open immersion
< d formal model U «—— X: open immer-
s10Mn.

o (U, — X}: (finite) covering
& 1 formal models U, <—— X such that
X — U Ua/.

Proposition. Any representable presheaf on CRf g4
1s a sheatf.

(Proof: By birational patching of formal models.)



General Rigid Spaces

Definition.

General Rigid Space = a sheaf # of sets on CRf 34
such that

(1) d surjective map of sheaves

in—>f,

where VY;: coherent rigid spaces.
(2) Fori, j €1,
Y, X 3/]' — Y,

an increasing sequence of open immersions.

Rf = the category of general rigid spaces.



Relationship with
algebraic spaces

Theorem. 4 GAGA functor

Algebraic spaces
{of finite type / Qp} — RE

Ingredients for the proof:

* Embedding theorem for algebraic spaces.

* Equivalence Theorem:



Equivalence Theorem. §: coherent adequate for-
mal scheme

(X/S: formal al-)

gebraic space of ; / {adm. blow-ups}
finite type

A

J

~ {X /S : formal scheme

 \of finite type } / {adm. blow-ups}

Follows from:

Theorem. S: as above, X/S: formal algebraic
space of finite type.

— A n: X’ — X: admissible blow-up such that
X’: formal scheme.



Visualization

=-=

e X = X"8: coherent rigid space
(X) = lim X’
H
X'—-X
(projective limit of all admissible blow-ups).
e Specialization map spy-: (X) — X'.

o Oi)?t (Integral Structure Sheaf): limit of Oy-.

e Rigid Structure Sheat:
Ox = lim Hom (1", OI)?t),
n>0 A

where 7 : 1deal of definition.

The ring used

In p-adic situation: = ol
vesterday n p-adic situation: Oy OX [p]



int
01)? is the canonical
integral model of Oy

~» Zariski-Riemann triple ZR(X) = ((X), Oi)l(lt, Ox).

Defined similarly for
general rigid spaces

Remark. Notice the analogy:
(&,] |) : Hermitian bundle
«— & with integral model &M

Proposition.
Topos associated to (X) = admissible topos X_ .




Relation with other theories

=—=

(1) Tate’s rigid spaces are naturally objects of Rf (via
Raynaud’s theorem & patching).

(Tate’s rigid

) —> Rf
spaces

affinoids — affinoids.

Coherent rigid space

e R of the form (Spf A)"'&.

(2) Zariski-Riemann triples are regarded as Huber’s
adic spaces.



Diagram

f.1.

Birational
Geometry

Rf

/R

Not f.1.

Tate S I'lgld) ff Huber S

spaces

dlC spaces

Spectral
Geometry

Berkov1ch
f.f. = fully faithful Spaces



Formal Flattening Theorem

=-=

Theorem (Bosch-Raynaud, Fujiwara).

e f: X — §: finite type between coherent ade-
quate formal schemes.

— the following conditions are equivalent:

(1) f1g. X118 — §Mg: flat (g} (f18): flat as a
morphism of local ringed spaces).

(2)3 S’ — S: admissible blow-up such that the
strict transform f”: X” — S’ is flat.

Proof: Similar to the algebraic case.



Corollaries

Corollary. Admissible blow-ups are cofinal in the
category of formal modifications.

Corollary (Gerritzen-Grauert). In Tate’s rigid
analytic geometry,

sep. €tale iInj. <=  open imm.



Properness in Rigid
Geometry

Three different definitions

. Universally closed, separated, of finite type.

. Raynaud properness; i.e., having proper formal
model.

. Kiehl properness; 1.e., existence of atfinoid
enlargements of coverings for each relatively
compact affinoid open subset.

Difficult: 2. — 3.




For f: X — Spt V: of finite type,

Showing 2. — 3.

Theorem.

U c X: affine open such that U: proper

— d7: X’ — X: admissible blow-up and A W C
X’: open such that

o L(U)C W,
e W — SpfA: contraction to an affine formal
scheme.

Remark. Proved by Liitkebohmert, when V = DVR
(1990).



Formal Geometry and Rigid
Geometry

General Principle

Theorems in Theorems In
Formal Geometry Rigid Geometry

e.g.
GFGA theorems GAGA theorems



Finiteness Theorem

_'_'_

Formal Geometry

Rigid Geometry

Y. quasi-compact ade-
quate and amenable
f: X — Y: proper of
finite presentation

— Rf« maps
D:Oh(X) to Dzoh(Y)
for = =0, +, —,b.

Y quasi-compact
¢: X — M: proper

— Ry,  maps
D:Oh(X) to Dzoh(‘y)
forx =0, +, —,b.




Comparison Theorem

_'_'_

Formal Geometry

Rigid Geometry

(Y, Z): universal adhe-
sive pair, amenable

f: X — Y: proper of
finite presentation

—
Dcoh(X)

for

D*(X)

RE
4(?)

for

R f*l
Dzoh(Y)

(B, I): complete t.u.a.,
U = Spec B\ V().

f: X — Y: proper U-
morphisms.

—

* I'lg * an
Dcoh(X) Dcoh(X )

RF

rig

R f*[
Dzoh(Y)




Existence Theorem

_'_'_

Formal Geometry | Rigid Geometry

(B,I): complete t.u.a. (B, I): complete t.u.a.,

pair, univ. top. coh. U = Spec B\ V(I).
frX — ¥ = Spech: f: X — Y: proper U-
proper of finite pre- :

morphisms.

sentation
—

— Db X ~ Db Xan
coh( ) — coh( )

D () — Doy (X)




