Rigid Geometry and Applications II

Kazuhiro Fujiwara & Fumiharu Kato

Birational Geometry from Zariski's viewpoint

 S: coherent (= quasi-compact and quasi-separated) (analog. compact Hausdorff)

• $U = S \setminus D \hookrightarrow S$ quasicompact open immersion (U: dense in S).

 I_D = defining ideal of D

Basic Question: Extension problem

- *P*: a property of morphisms (e.g. *P* ="flat")
- $f_U: X_U \longrightarrow U$: finitely presented /*U* with property *P*.
- Assume $\exists f: X \to S$: an extension of f_U .

 \sim Can one find such an *f* with *P* ?

NO in general.

Need to allow birational changes of S preserving U.

Modifications

 $MD_{(S,U)}$: Category of "U-admissible" modifications: dense

The category $MD_{(X,U)}$ is cofiltered.

BL_(S,U): Full subcategory of "*U*-admissible" blow-ups:

• Objects: $S' \longrightarrow S$: a blow-up with the center $\subseteq S \setminus U$ (set-theoretically).

Example: $S = \operatorname{Spec} A$, D = V(I) $\rightsquigarrow S' = \operatorname{Proj} \bigoplus_{n \ge 0} J^n$, $I^k \subseteq J$ for $\exists k$.

Strict Transform

 $S' \longrightarrow S: U$ -admissible modification. $f: X \longrightarrow S:$ a morphism.

 $X_{S'} \longleftrightarrow X'$: dividing out \mathcal{I}_D -torsions.

Modified Extension Problem

 $f_U: X_U \longrightarrow U$: finitely presented /U with the property P.

Assume $\exists f: X \to S$: an extension of f_U .

 \sim Can one find a *U*-admissible modification (resp. blow-up) $S' \rightarrow S$ such that the strict transform $f': X' \rightarrow S'$ has P?

Flattening Theorem

Case: *P*=flat

Theorem (Gruson-Raynaud, 1970).

 $f_U: X_U \longrightarrow U$: flat, finitely presented $\implies \exists S' \rightarrow S: U$ -admissible blow-up such that $f': X' \rightarrow S'$: flat, finitely presented.

Corollary. BL_(S,U) is cofinal in $MD_{(S,U)}$.

Comments on Flattening Theorem

Clear if S = Spec V, V: DVR.
If V: valuation ring, flatness is clear, while finite presentation is rather difficult.

Proof - Revival of Zariski's idea

Zariski-Riemann space (Zariski, 1939)

$$\langle U \rangle_{\text{cpt}} = \varprojlim_{S' \in \mathbf{BL}_{(S,U)}} S'$$

Projective limit taken in the category of local ringed spaces

(1) Generalization of abstract Riemann surface:
S: regular curve ⇒ ⟨U⟩_{cpt} = S (Dedekind-Weber)
(2) Zariski's motivation: resolution of singularities

Points and local rings

 $x \in \langle U \rangle_{\text{cpt}} \supset U$ • $x \in U \Longrightarrow \mathcal{O}_{\langle U \rangle_{\text{cpt}, X}} = \mathcal{O}_{U, X}.$ • $x \notin U \Longrightarrow \exists V_X$: valuation ring (of height ≥ 1) with

$$\alpha \colon \operatorname{Spec} V_{x} \longrightarrow S'$$

 $\rightarrow x = \{p_{S'}\}_{S' \in \mathbf{BL}(S,U)}$: compatible system of points.

 $(p_{S'}:$ the image of the closed points of Spec V_X .)

 $O_{\langle U \rangle_{cpt}}$: \mathcal{I}_D -valuative ring — A "composite" of local rings of Uand valuation rings.

Notice: The valuation rings are not necessarily of height 1 (even when S: algebraic variety /k).
→ One has to consider valuation rings of *higher height*.

Example of valuation rings

S :algebraic surface

ht.	rat. rk.	
0	0	trivial valuation
1	1	divisorial
		non-divisorial
	2	non-divisorial
2	2	composite of two divisorial valuations

Intuitive Description

V: Valuation ring

$$\langle U \rangle_{\rm cpt} = U \amalg T^*_{D/S}$$

 $T^*_{D/S}$: The set of "long curves" passing through D: "Tubular neighborhood"

Fundamental Property

Theorem (Zariski, 1944).

 $\langle U \rangle_{\rm cpt}$ is quasi-compact.

• Flattening theorem: consequence of the quasicompactness.

Proofs:

(1) lim coherent topoi = coherent topos

(cf. lim cpt Hausdorff spaces = cpt Hausdorff space) + Deligne's theorem (existence of points)

(2) Stone's representation theorem for distributive lattices.

Proof of flattening theorem

Idea: Reduction to "long curves" using the quasi-compactness

(1) True for long curves, i.e. S=Spec V.
(2) True for S=Spec "local ring of a point of ⟨U⟩_{cpt}. (Follows from (1) and "true on U" by "patching".)
(1), (2), and P: locally finitely presented ⇒ Claim is true "locally on ⟨U⟩_{cpt}", i.e., ∀ x ∈ ⟨U⟩_{cpt},

Claim is true on U_x . (3) Quasi-compactness \implies Done by birational patching

 $\begin{array}{c} U_{x} \hookrightarrow S' \\ \downarrow \\ S \end{array} \begin{array}{c} U - Admissible \\ blow - up \end{array}$

Other applications

- Embedding theorem for algebraic spaces (Nagata (1963): for Noetherian schemes).
- Resolution of singularities of quasi-excellent surfaces (Zariski).

Contents of the Book (Vol. I)

- 1. Preliminaries
- 2. Formal geometry
- 3. Basics on rigid geometry
- 4. Formal flattening theorem
- 5. Enlargement theorem

To be discussed (Vol. II)?

- 1. Etale topology
- 2. Lefschetz trace formula
- 3. Relationship with logarithmic geometry & ramification theory

Why de we do this?

- 1. Arithmetic geometry of Shimura varieties (local models, *p*-adic modular forms).
- 2. Cohomology theory of schemes (*l*-adic Lefschetz trace formula, rigid cohomology of Berthelot).
- 3. Mirror symmetry (expected construction of Mirror partner (Kontsevich, Fukaya,...)).

Recall: Our approach

Birational geometry of formal spaces = Rigid geometry

Raynaud's viewpoint of rigid geometry

+

Zariski's viewpoint of birational geometry

Geometry of models

Rigid analytic geometry

Zariski-Riemann space

Geometry of Formal Schemes

Birational approach to Rigid Geometry

Adequate Formal schemes

- Defined ring theoretically.
- Noetherian outside the ideal of definition.

Objects contain:

- Spf V, V: *a*-adically complete valuation ring.
- Noetherian formal schemes.

Functoriality:

- Closed under finite type extensions.
- Base change by finite type morphisms.

Notice:

- The height of V can be arbitrary.
- Includes formal models of Tate's affinoid algebras.

Nice Point: Can generalize Theorems in EGA III (Finitudes, GFGA Comparison, GFGA Existence) in derived categorical language.

Coherent Rigid Spaces

CFs^{adq} = the category of coherent (= quasi-compact and quasi-separated) adequate formal schemes.
J Notion of "admissible blow-ups".

Definition. The category of coherent rigid spaces:

 $CRf = CFs^{adq} / \{admissible blow-ups\}.$

Quotient functor

$$\mathbf{CFs}^{\mathrm{adq}} \longrightarrow \mathbf{CRf} \qquad X \longmapsto X^{\mathrm{rig}}.$$

Admissible Topology

- $\mathcal{U} \hookrightarrow X$: (coherent) open immersion $\iff \exists$ formal model $U \hookrightarrow X$: open immersion.
- { $\mathcal{U}_{\alpha} \hookrightarrow X$ }: (finite) covering $\iff \exists$ formal models $U_{\alpha} \hookrightarrow X$ such that $X = \bigcup U_{\alpha}$.

Proposition. Any representable presheaf on \mathbf{CRf}_{ad} is a sheaf.

(Proof: By birational patching of formal models.)

General Rigid Spaces

Definition.

General Rigid Space = a sheaf \mathcal{F} of sets on \mathbf{CRf}_{ad} such that

(1) \exists surjective map of sheaves

$$\bigsqcup_{i\in I} \mathcal{Y}_i \longrightarrow \mathcal{F},$$

where \mathcal{Y}_i : coherent rigid spaces. (2) For $i, j \in I$,

$$\mathcal{Y}_i \times \mathcal{Y}_j \longrightarrow \mathcal{Y}_i:$$

an increasing sequence of open immersions.

 \mathbf{Rf} = the category of general rigid spaces.

Relationship with algebraic spaces

Theorem. \exists GAGA functor $\begin{cases} \text{Algebraic spaces} \\ \text{of finite type } / \mathbb{Q}_p \end{cases} \longrightarrow \mathbf{Rf.}$

Ingredients for the proof:

- Embedding theorem for algebraic spaces.
- Equivalence Theorem:

Equivalence Theorem. *S* : coherent adequate formal scheme

 $\begin{cases} X/S: \text{ formal al-}\\ \text{gebraic space of}\\ \text{finite type} \end{cases} / \{\text{adm. blow-ups}\}$

 $\xrightarrow{\sim} \begin{cases} X/S: \text{ formal scheme} \\ \text{of finite type} \end{cases} / \{\text{adm. blow-ups}\}$

Follows from:

Theorem. *S*: as above, *X*/*S*: formal algebraic space of finite type. $\implies \exists \pi \colon X' \rightarrow X$: admissible blow-up such that *X'*: formal scheme.

Visualization

• $X = X^{rig}$: coherent rigid space

$$\langle X \rangle = \lim_{X' \to X} X'$$

(projective limit of all admissible blow-ups).

- Specialization map $\operatorname{sp}_{X'} : \langle X \rangle \longrightarrow X'$.
- O_X^{int} (Integral Structure Sheaf): limit of $O_{X'}$.

• Rigid Structure Sheaf:

$$O_{\mathcal{X}} = \varinjlim_{n \ge 0} \mathcal{H}om_{O_{\mathcal{X}}^{\text{int}}}(\mathcal{I}^n, O_{\mathcal{X}}^{\text{int}}),$$

where \mathcal{I} : ideal of definition.

The ring used yesterday

In *p*-adic situation:
$$O_{\chi} = O_{\chi}^{\text{int}}[\frac{1}{p}].$$

\rightarrow Zariski-Riemann triple **ZR**(X) = ($\langle X \rangle, O_X^{\text{int}}, O_X$).

Defined similarly for general rigid spaces

Remark. Notice the analogy:

$(\mathcal{E}, | |)$: Hermitian bundle

 $\leftrightarrow \mathcal{E}$ with integral model \mathcal{E}^{int} .

Proposition.

Topos associated to $\langle X \rangle \cong$ admissible topos X_{ad}^{\sim} .

Relation with other theories

(1) Tate's rigid spaces are naturally objects of **Rf** (via Raynaud's theorem & patching).

 $\begin{pmatrix} \text{Tate's rigid} \\ \text{spaces} \end{pmatrix} \longrightarrow \mathbf{R}\mathbf{f}$

affinoids \mapsto affinoids.

Affinoid in \mathbf{Rf} = Coherent rigid space of the form $(\operatorname{Spf} A)^{\operatorname{rig}}$.

(2) Zariski-Riemann triples are regarded as Huber's adic spaces.

Formal Flattening Theorem

Theorem (Bosch-Raynaud, Fujiwara).

- $f: X \rightarrow S$: finite type between coherent adequate formal schemes.
- ⇒ the following conditions are equivalent:
 (1) f^{rig}: X^{rig} → S^{rig}: flat (^{def} (f^{rig}): flat as a morphism of local ringed spaces).
 (2) ∃ S' → S: admissible blow-up such that the strict transform f': X' → S' is flat.

Proof: Similar to the algebraic case.

Corollaries

Corollary. Admissible blow-ups are cofinal in the category of formal modifications.

Corollary (Gerritzen-Grauert). In Tate's rigid analytic geometry,

sep. étale inj. \iff open imm.

Properness in Rigid Geometry

Three different definitions

- 1. Universally closed, separated, of finite type.
- 2. Raynaud properness; i.e., having proper formal model.
- 3. Kiehl properness; i.e., existence of affinoid enlargements of coverings for each relatively compact affinoid open subset.

Difficult: 2. \implies 3.

For $f: X \rightarrow \text{Spf } V$: of finite type, Showing 2. \implies 3.

Theorem.

 $U \subset X$: affine open such that \overline{U} : proper $\implies \exists \pi \colon X' \rightarrow X$: admissible blow-up and $\exists W \subset X'$: open such that

•
$$\pi^{-1}(U) \subseteq W$$
,

• $W \rightarrow \text{Spf } A$: contraction to an affine formal scheme.

Remark. Proved by Lütkebohmert, when V = DVR (1990).

Formal Geometry and Rigid Geometry

General Principle

Theorems in Formal Geometry Theorems in Rigid Geometry

e.g. GFGA theorems

GAGA theorems

Finiteness Theorem

Formal Geometry	Rigid Geometry
$Y: \text{ quasi-compact ade-quate and amenable}$ $f: X \to Y: \text{ proper of}$ finite presentation $\implies Rf_* \text{ maps}$ $\mathbf{D}^*_{\text{coh}}(X) \text{ to } \mathbf{D}^*_{\text{coh}}(Y)$ for $* = \emptyset, +, -, b.$	$\begin{array}{l} \mathcal{Y}: \text{ quasi-compact} \\ \varphi: \mathcal{X} \to \mathcal{Y}: \text{ proper} \\ \Longrightarrow \qquad & R\varphi_* \text{maps} \\ \mathbf{D}^*_{\mathrm{coh}}(\mathcal{X}) & to \mathbf{D}^*_{\mathrm{coh}}(\mathcal{Y}) \\ & \mathrm{for} \ * = \emptyset, +, -, b. \end{array}$

Comparison Theorem

Formal Geometry	Rigid Geometry
(<i>Y</i> , <i>Z</i>): universal adhe- sive pair, amenable	$(B, I): \text{ complete t.u.a.}, U = \operatorname{Spec} B \setminus V(I).$
$f: X \rightarrow Y$: proper of finite presentation	$f: X \rightarrow Y$: proper <i>U</i> -morphisms.
$ \implies$	\implies
$\mathbf{D}^*_{\operatorname{coh}}(X) \xrightarrow{\operatorname{for}} \mathbf{D}^*(\widehat{X})$	$\mathbf{D}^*_{\operatorname{coh}}(X) \xrightarrow{\operatorname{rig}} \mathbf{D}^*_{\operatorname{coh}}(X^{\operatorname{an}})$
$\left \begin{array}{c} \mathbf{R}f_{*} \\ \approx \end{array} \right \left \begin{array}{c} \mathbf{R}\widehat{f_{*}} \\ \mathbf{R}\widehat{f_{*}} \end{array} \right $	Rf_* \approx Rf_*^{an}
$\mathbf{D}_{\operatorname{coh}}^{*}(Y) _{\operatorname{for}} \mathbf{D}^{*}(\widehat{Y})$	$\mathbf{D}_{\operatorname{coh}}^{*'}(Y) \xrightarrow{\operatorname{rig}} \mathbf{D}^{*}(Y^{\operatorname{an}})$

Existence Theorem

Formal Geometry	Rigid Geometry
(B, I): complete t.u.a. pair, univ. top. coh. $f: X \to Y = \text{Spec } B:$ proper of finite pre- sentation $\implies \mathbf{D}_{\text{coh}}^{\text{b}}(X) \xrightarrow{\sim} \mathbf{D}_{\text{coh}}^{\text{b}}(\widehat{X})$	$(B, I): \text{ complete t.u.a.}, U = \text{Spec } B \setminus V(I). f: X \to Y: \text{ proper } U- morphisms. \implies \mathbf{D}_{\text{coh}}^{\text{b}}(X) \xrightarrow{\sim} \mathbf{D}_{\text{coh}}^{\text{b}}(X^{\text{an}})$