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Birational Geometry from 
Zariski’s viewpoint

• S : coherent (= quasi-compact
and quasi-separated)

•U = S \ D ↪→ S quasi-

compact open immersion

(U: dense in S ).
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• S : coherent (= quasi-compact
and quasi-separated)

(analog. compact Hausdorff)

•U = S \ D ↪→ S quasi-

compact open immersion

(U: dense in S ).

ID = defining ideal of D
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Basic Question:
Extension problem

2

fU : XU −→ U: finitely presented /U
with property P.

Assume ∃ f : X → S : an extension of fU .

! Can one find such an f with P ?

NO. in general: (e.g. P =“flat”)

Need to allow birational changes of S preservingU.
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Modifications
3

MD(S ,U): Category of “U-admissible” modifica-

tions:

•Objects: U
! " !!
# $

""!
!!

!!
!!

!!
!!

S
′
proper

##

S

•Morphisms: S
′′′

$$""""""""

%%########

S
′

S
′′

The categoryMD(X,U) is cofiltered.

BL(S ,U): Full subcategory of “U-admissible” blow-

ups:

•Objects: S ′ −→ S : a blow-up with the center

⊆ S \ U (set-theoretically).
Example: S = Spec A, D = V(I)

! S
′ = Proj

⊕
n≥0 Jn, Ik ⊆ J for ∃ k.

dense



3

MD(S ,U): Category of “U-admissible” modifica-

tions:

•Objects: U
! " !!
# $

""!
!!

!!
!!

!!
!!

S
′
proper

##

S

•Morphism: S
′′′

$$""""""""

%%########

S
′

S
′′

The categoryMD(X,U) is cofiltered.

BL(S ,U): Full subcategory of “U-admissible” blow-

ups:

•Objects: S ′ −→ S : a blow-up with the center

⊆ S \ U (set-theoretically).
Example: S = Spec A, D = V(I)

! S
′ = Proj

⊕
n≥0 Jn, Ik ⊆ J for ∃ k.



Strict Transform
4

S ′ −→ S : U-admissible modification.

f : X −→ S : a morphism.

X

!!

XS ′ = X ×S S ′""

fS ′
!!

X′! """

f ′
##!!!!!!!!!!!!!!!!!!!!!!!!!

S S ′""

XS ′ ←−↩ X′: dividing out ID-torsions.



Modified Extension Problem
5

fU : XU −→ U: finitely presented /U with the

property P.

Assume ∃ f : X → S : an extension of fU .

! Can one find aU-admissible modification (resp.

blow-up) S ′ → S such that the strict transform

f ′ : X′ → S ′ has P ?



Flattening Theorem

Case: P=flat 

6

Theorem (Gruson-Raynaud, 1970).

fU : XU −→ U: flat, finitely presented

=⇒ ∃ S ′ → S : U-admissible blow-up such that

f ′ : X′ → S ′: flat, finitely presented.

• Clear if S = SpecV , V: DVR.
• If V: valuation ring, flatness is clear, while fi-
nite presentation is rather difficult.

Corollary.

BL(S ,U) is cofinal inMD(S ,U).



Comments on Flattening Theorem
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Proof - Revival of 
Zariski’s idea 7

Zariski-Riemann space

〈U〉cpt = lim←−−
S ′∈BL(S ,U)

S
′

Projective limit taken in the category

of local ringed spaces

Zariski-Riemann space (Zariski, 1939) 

Projective limit taken in the category of
local ringed spaces
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Zariski-Riemann space

〈U〉cpt = lim←−−
S ′∈BL(S ,U)

S
′

Projective limit taken in the category

of local ringed spaces

(1) Generalization of abstract Riemann surface:

S : regular curve=⇒〈U〉cpt = S (Dedekind-Weber)
(2) Zariski’s motivation: resolution of singularities



Points and local rings
8

x ∈ 〈U〉cpt ⊃ U
• x ∈ U =⇒ O〈U〉cpt,x = OU,x.• x ! U =⇒ ∃ Vx: valuation ring (of height ≥ 1)
with

S ′
!!

α : SpecVx ""

∃1 ##!!!!!!!

S

" x = {pS ′}S ′∈BL(S ,U): compatible system of

points.

(pS ′: the image of the closed points of SpecVx.)
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O〈U〉cpt: ID-valuative ring
— A “composite” of local rings of U

and valuation rings.

Notice: The valuation rings are not necessarily of

height 1.

! One has to consider valuation rings of higher

height.

9

O〈U〉cpt: ID-valuative ring
— A “composite” of local rings of U

and valuation rings.

Notice: The valuation rings are not necessarily of

height 1 (even when S : algebraic variety /k).

! One has to consider valuation rings of higher

height.



ht. rat. rk.
0 0 trivial valuation

1
1

divisorial

non-divisorial

2 non-divisorial

2 2 composite of two divisorial 
valuations

Example of valuation rings
S :algebraic surface



Intuitive Description
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V: Valuation ring

SpecV =
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V: Valuation ring

SpecV =
“Long Curve”
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V: Valuation ring

SpecV =

〈U〉cpt = U # T∗D/S
T∗
D/S : The set of “long curves”

passing through D:

“Tubular neighborhood”
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Fundamental Property
11

Theorem (Zariski 1944).

〈U〉cpt is quasi-compact.
• Flattening theorem: consequence of the quasi-
compactness.

• Zariski: Resolution of singularities for excel-
lent surfaces.

Proof strategies:

(1) lim←−− coherent topoi = coherent topos (analog.
lim←−− cpt Hausdorff spaces= cpt Hausdorff space.
+ Deligne’s theorem

(2) Stone’s representation theorem of distributive

lattices.
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Theorem (Zariski, 1944).

〈U〉cpt is quasi-compact.
• Flattening theorem: consequence of the quasi-
compactness.

• Zariski: Resolution of singularities for excel-
lent surfaces.

Proofs:

(1) lim←−− coherent topoi = coherent topos
(cf. lim←−− cpt Hausdorff spaces = cpt Hausdorff
space)+Deligne’s theorem (existence of points)

(2) Stone’s representation theorem for distributive

lattices.



Proof of flattening theorem
Idea: Reduction to “long curves” using the quasi-compactness 

(1) True for long curves, i.e. S=Spec V.
(2) True for S=Spec “local ring of a point of                     
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Theorem (Zariski 1944).

〈U〉cpt is quasi-compact.
• Flattening theorem: consequence of the quasi-
compactness.

• Zariski: Resolution of singularities for excel-
lent surfaces.

Proof strategies:

(1) lim←−− coherent topoi = coherent topos (analog.
lim←−− cpt Hausdorff spaces= cpt Hausdorff space.
+ Deligne’s theorem

(2) Stone’s representation theorem of distributive

lattices.

.
(Follows from (1) and “true on U” by “patching”.)

12

=⇒ Claim is true “locally on 〈U〉cpt”,
i.e., ∀ x ∈ 〈U〉cpt,

Ux
! " !!
S
′

""

S

Claim is true on Ux.

(1), (2), and P: 
locally finitely 
presented

U-Admissible 
blow-up

(3) Quasi-compactness 
12

=⇒ Claim is true “locally on 〈U〉cpt”,
i.e., ∀ x ∈ 〈U〉cpt,

Ux
! " !!
S
′

""

S

Claim is true on Ux.

Done by birational patching



Other applications

• Embedding theorem for algebraic spaces                 
(Nagata (1963): for Noetherian schemes).

• Resolution of singularities of quasi-excellent 
surfaces (Zariski).



Contents of the Book 
(Vol. I)

1. Preliminaries

2. Formal geometry

3. Basics on rigid geometry

4. Formal flattening theorem

5. Enlargement theorem



To be discussed (Vol. II) ?

1. Etale topology

2. Lefschetz trace formula

3. Relationship with logarithmic geometry & 
ramification theory



Why de we do this ?

1. Arithmetic geometry of Shimura varieties (local 
models, p-adic modular forms).

2. Cohomology theory of schemes (l-adic Lefschetz 
trace formula, rigid cohomology of Berthelot).

3. Mirror symmetry (expected construction of Mirror 
partner (Kontsevich, Fukaya,...)).



Recall: Our approach

Birational geometry of formal spaces = Rigid geometry

Geometry of 
models

23

−→

‖
Geometry of Formal Schemes

23

−→

‖

Rigid analytic
geometry

Raynaud’s viewpoint 
of rigid geometry

Zariski’s viewpoint of
birational geometry

Zariski-Riemann
space



Birational approach to Rigid 
Geometry
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D: “p = 0”

Spf Zp
13

D: “p = 0”

Spf Zp

Birational Geometry p-adic Rigid Geometry



Adequate Formal schemes

13

D: “p = 0”

Spf Zp

Functoriality:

• Closed under finite type extensions.
• Base change by finite type morphisms.

Objects contain:

• Spf V , V: a-adically complete valuation ring.
•Noetherian formal spaces.

Notice:

• The height of V can be arbitrary.
• Enough to include formal models of affinoid al-
gebras.

• Defined ring theoretically.
• Noetherian outside the ideal of definition.
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Nice Point: Can generalize Theorems in EGA III (Finitudes, GFGA 
Comparison, GFGA Existence) in derived categorical language. 
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D: “p = 0”

Spf Zp

Functoriality:

• Closed under finite type extensions.
• Base change by finite type morphisms.

Objects contain:

• Spf V , V: a-adically complete valuation ring.
•Noetherian formal schemes.

Notice:

• The height of V can be arbitrary.
• Includes formal models of Tate’s affinoid alge-
bras.

Fs
adq

Fs
fin
/V

Fs
fin
/DVR

Fs
Noe



Coherent Rigid Spaces
15

CFs
adq = the category of coherent (= quasi-compact

and quasi-separated) adequate formal spaces.

∃ Notion of “admissible blow-ups”.
Definition. The category of coherent rigid spaces:

CRf = CFsadq/{admissible blow-ups}.
Quotient functor

CFs
adq −→ CRf X $−→ X

rig.
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CFs
adq = the category of coherent (= quasi-compact

and quasi-separated) adequate formal schemes.

∃ Notion of “admissible blow-ups”.
Definition. The category of coherent rigid spaces:
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adq −→ CRf X $−→ X

rig.



Admissible Topology
16

•U ↪−→ X: (coherent) open immersion
⇐⇒ ∃ formal model U ↪−→ X: open immer-

sion.

• {Uα ↪→ X}: (finite) covering
⇐⇒ ∃ formal models Uα ↪−→ X such that

X =
⋃
Uα.

Proposition. Any representable presheaf onCRfad
is a sheaf.
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General Rigid Spaces
17

Definition.

General Rigid Space = a sheaf F of sets on CRfad
such that

(1) ∃ surjective map of sheaves∐
i∈I
Yi −→ F ,

where Yi: coherent rigid spaces.
(2) For i, j ∈ I,

Yi ×Y j −→ Yi :
an increasing sequence of open immersions.

20

Rf

Not f.f.

!!(
Tate’s rigid

spaces

) f.f.

""!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

f.f. ##

f.f.

$$""""""""""""""""""""""""""""""""

(
Huber’s

adic spaces

)

(
Berkovich

spaces

)
Rf = the category of general rigid spaces.



Relationship with 
algebraic spaces

25

Theorem.

• S : coherent formal scheme.
• f : X → S : finite type between coherent ade-

quate formal algebraic spaces.

⇐⇒ ∃ π : X′ → X: admissible blow-up such that

X′: formal scheme.

Theorem. ∃ GAGA functor{
Algebraic spaces

of finite type /Qp

}
−→ Rf.

Equivalence Theorem. S : coherent adequate for-

mal scheme
X/S : formal al-
gebraic space of

finite type


/
{adm. blow-ups}

∼−→
{
X/S : formal scheme
of finite type

} /
{adm. blow-ups}

Ingredients for the proof:

• Embedding theorem for algebraic spaces.

• Equivalence Theorem:
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Follows from:
25

Theorem. S : as above, X/S : formal algebraic
space of finite type.

=⇒ ∃ π : X′ → X: admissible blow-up such that

X′: formal scheme.

Theorem. ∃ GAGA functor{
Algebraic spaces

of finite type /Qp

}
−→ Rf.

Equivalence Theorem. S : coherent adequate for-

mal scheme
X/S : formal al-
gebraic space of

finite type


/
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{
X/S : formal scheme
of finite type

} /
{adm. blow-ups}



Visualization
18

• X = Xrig: coherent rigid space
〈X〉 = lim←−−

X′→X
X
′

(projective limit of all admissible blow-ups).

• OintX (Integral Structure Sheaf): limit of OX′.
• Rigid Structure Sheaf:

OX = lim−−→
n≥0
HomOintX (I

n,OintX ),

where I: ideal of definition.
! Zariski-Riemann tripleZR(X) = (〈X〉,OintX ,OX).
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yesterday
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• X = Xrig: coherent rigid space
〈X〉 = lim←−−

X′→X
X′

(projective limit of all admissible blow-ups).

• Specialization map spX′ : 〈X〉 −→ X′.
• OintX (Integral Structure Sheaf): limit of OX′.
• Rigid Structure Sheaf:

OX = lim−−→
n≥0
HomOintX (I

n,OintX ),

where I: ideal of definition.
! Zariski-Riemann tripleZR(X) = (〈X〉,OintX ,OX).
In p-adic situation: OX = OintX [1p].
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• X = Xrig: coherent rigid space
〈X〉 = lim←−−

X′→X
X
′

(projective limit of all admissible blow-ups).

• OintX (Integral Structure Sheaf): limit of OX′.
• Rigid Structure Sheaf:

OX = lim−−→
n≥0
HomOintX (I

n,OintX ),

where I: ideal of definition.
! Zariski-Riemann tripleZR(X) = (〈X〉,OintX ,OX).

Defined similarly for 
general rigid spaces

19

• OintX is the canonical integral model of OX.
Proposition.

Topos associated to 〈X〉 ! admissible topos X∼
ad
.

       is the canonical 
integral model of 
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.

19

• OintX is the canonical integral model of OX.
Proposition.

Topos associated to 〈X〉 ! admissible topos X∼
ad
.

Remark. Notice the analogy:

(E, | |) : Hermitian bundle
←→ E with integral model Eint.



Relation with other theories
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affinoids #−→ affinoids.
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Rf

Not f.f.
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) f.f.
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f.f. ##

f.f.

$$""""""""""""""""""""""""""""""""

(
Huber’s

adic spaces

)

(
Berkovich

spaces

)
Rf = the category of general rigid spaces.

By (
Tate’s rigid

spaces

)
−→ Rf

affinoids #−→ affinoids.

Affinoid in Rf =
Coherent rigid space

of the form (Spf A)rig.

(1) Tate’s rigid spaces are naturally objects of Rf (via 
Raynaud’s theorem & patching).

(2) Zariski-Riemann triples are regarded as Huber’s 
adic spaces.



Diagram

f.f. = fully faithful

20

Rf

Not f.f.ZR
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Tate’s rigid

spaces

) f.f.
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(
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)

(
Berkovich
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)
Rf = the category of general rigid spaces.

By (
Tate’s rigid

spaces

)
−→ Rf

affinoids #−→ affinoids.

Affinoid in Rf =
Coherent rigid space

of the form (Spf A)rig.

Birational 
Geometry

Spectral 
Geometry



Formal Flattening Theorem

Proof: Similar to the algebraic case.

26

Theorem (Bosch-Raynaud, Fujiwara).

• f : X → S : finite type between coherent ade-

quate formal schemes.

=⇒ the following conditions are equivalent:

(1) f rig : Xrig → S rig: flat (
def⇐⇒ 〈 f rig〉: flat as a

morphism of local ringed spaces).

(2) ∃ S ′ → S : admissible blow-up such that the

strict transform f ′ : X′ → S ′ is flat.

Corollary. Admissible blow-ups are cofinal in the

category of formal modifications.

Corollary (Gerritzen-Grauert). In Tate’s rigid

analytic geometry,

sep. étale inj. ⇐⇒ open imm.



26

Theorem (Fujiwara, 1998).

• f : X → S : finite type between coherent ade-

quate formal schemes.

=⇒ the following conditions are equivalent:

(1) f : rigid-flat (⇐⇒ 〈 f 〉: flat as a morphism of

local ringed spaces).

(2) ∃ S ′ → S : admissible blow-up such that the

strict transform f ′ : X′ → S ′ is flat.

Corollary. Admissible blow-ups are cofinal in the

category of formal modifications.

Corollary (Gerritzen-Grauert). In Tate’s rigid

analytic geometry,

sep. étale inj. ⇐⇒ open imm.

Corollaries



Properness in Rigid 
Geometry

1. Universally closed, separated, of finite type.
2. Raynaud properness; i.e., having proper formal 

model.
3. Kiehl properness; i.e., existence of affinoid  

enlargements of coverings for each relatively 
compact affinoid open subset.

Three different definitions

Difficult: 

27

For f : X → Spf V ,

Showing 2. =⇒ 3.

Claim.

U ⊂ X: affine open such that U: proper
=⇒ ∃ π : X′ → X: admissible blow-up and ∃ W ⊂
X′: affine open such that
• π−1(U) ⊆ V ,
• V → U: contraction.
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For f : X → Spf V ,

Showing 2. =⇒ 3.

Claim.

U ⊂ X: affine open such that U: proper
=⇒ ∃ π : X′ → X: admissible blow-up and ∃ W ⊂
X′: affine open such that
• π−1(U) ⊆ V ,
• V → U: contraction.

27

For f : X → Spf V: of finite type,

Showing 2. =⇒ 3.

Theorem.

U ⊂ X: affine open such that U: proper
=⇒ ∃ π : X′ → X: admissible blow-up and ∃ W ⊂
X′: open such that
• π−1(U) ⊆ W,
•W → Spf A: contraction to an affine formal

scheme.

Remark. Proved by Lütkebohmert, when V =DVR

(1990).
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Formal Geometry and Rigid 
Geometry

General Principle

Theorems in
Formal Geometry 

Theorems in
Rigid Geometry 

GFGA theorems GAGA theorems

e.g.



Finiteness Theorem

Formal Geometry Rigid Geometry
22

Y: quasi-compact ade-

quate and amenable

f : X → Y: proper of

finite presentation

=⇒ R f∗ maps

D
∗
coh
(X) to D

∗
coh
(Y)

for ∗ = ∅,+,−, b.
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Y: quasi-compact ade-

quate and amenable

f : X → Y: proper of

finite presentation

=⇒ R f∗ maps

D
∗
coh
(X) to D

∗
coh
(Y)

for ∗ = ∅,+,−, b.
Y: quasi-compact
ϕ : X→ Y: proper
=⇒ Rϕ∗ maps

D
∗
coh
(X) to D

∗
coh
(Y)

for ∗ = ∅,+,−, b.



Comparison Theorem

Formal Geometry Rigid Geometry
23

(Y,Z): universal adhe-
sive pair, amenable

f : X → Y: proper of

finite presentation

=⇒
D
∗
coh
(X) for !!

R f∗
""

D
∗(X̂)
R f̂∗

""

D
∗
coh
(Y)

for
!!

≈ ##!!!!!!!!!!!!!

!!!!!!!!!!!!!
D
∗(Ŷ)
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(Y,Z): universal adhe-
sive pair, amenable

f : X → Y: proper of

finite presentation

=⇒
D
∗
coh
(X) for !!

R f∗
""

D
∗(X̂)
R f̂∗

""

D
∗
coh
(Y)

for
!!

≈ ##!!!!!!!!!!!!!

!!!!!!!!!!!!!
D
∗(Ŷ)

(B, I): complete t.u.a.,
U = Spec B \ V(I).
f : X → Y: proper U-

morphisms.

=⇒
D
∗
coh
(X)

rig
!!

R f∗
""

D
∗
coh
(Xan)

R f an∗
""

D
∗
coh
(Y)

rig
!!

≈ $$"""""""""""""""""

""""""""""""""""" D
∗(Yan)



Existence Theorem

Formal Geometry Rigid Geometry
24

(B, I): complete t.u.a.
pair, univ. top. coh.

f : X → Y = Spec B:

proper of finite pre-

sentation

=⇒
D
b
coh
(X)

∼−→ D
b
coh
(X̂)

f : X → Y: proper U-

morphisms, U ⊆ S .
=⇒
D
∗
coh
(X)

rig
!!

R f∗
""

D
∗
coh
(Xan)

R f an∗
""

D
∗
coh
(Y)

rig
!!

≈ ##!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!! D
∗(Yan)

24

(B, I): complete t.u.a.
pair, univ. top. coh.

f : X → Y = Spec B:

proper of finite pre-

sentation

=⇒
D
b
coh
(X)

∼−→ D
b
coh
(X̂)

(B, I): complete t.u.a.,
U = Spec B \ V(I).
f : X → Y: proper U-

morphisms.

=⇒
D
b
coh
(X)

∼−→ D
b
coh
(Xan)


